
GB+USA

ContentsWhy Do We Need Robots p. 30

Robots Built with fischertechnik p. 32
Actuators p. 32
Sensors p. 32
ROBO Interface p. 33
Software ROBO Pro p. 33
Power Supply p. 33
Approach to Experimentation p. 34

First Steps p. 34

The First Simple Robot p. 36

Intelligent Wheeled Robot p. 38
Basic Model p. 38
The Lightseeker p. 40
The Tracker p. 42
Robot with Obstacle Detection p. 43
Lightseeker with Obstacle Detection p. 46
Robot with Edge Detection p. 48

The Walking Robot p. 51

Expansion Possibilities p. 53
Handheld Infrared Transmitter p. 53
ROBO RF Data Link p. 53
ROBO I/O-Extension p. 54

Trouble Shooting p. 55

2222 9999

R O B O M O B I L E S E T A C T I V I T Y B O O K L E T

3333 0000

GB+USA
R O B O M O B I L E S E T A C T I V I T Y B O O K L E T

Why Do We Need

Robots?

■ Carel Capek coined the term robot in his 1923 novel "Golem". This artificially created figure was
designed to take over human labor with his abilities.
In the 30’s and 40’s of the last century the robot became more of an automaton. Today we can look back
and smile at the different attempts to divest it with human characteristics such as a head with blinking
lights as eyes, etc. These machines showed little sign of intelligence or even mobility. Since the
principle of control has great influence on the robotics, the design of robots became more realistic with
the advent of electronic circuits. Even today, the question of the "intelligence" of the robot is subject of
much research and fact-finding in many companies, institutes and universities.

■ So called cybernetics offered the first promising approach to the problem. The term "cybernetics" is
derived from the Greek word kybernetes. The kybernetes was the navigator on Greek ships. He had to
determine the ship’s position and chart the course to the destination.
Clearly cybernetics was supposed to make the robot "intelligent”. But what would such intelligent
behavior look like?
We shall try to illustrate this using a thought experiment. Everybody has probably observed a moth’s
behavior in the light of a lamp. The moth detects the source of the light, flies toward it, and then avoids
hitting the lamp at the last moment. It is clear that in order to exhibit this behavior, the moth has to
detect the source of light, plot a course there and then fly toward it. This ability is based on instinctive
intelligent behavior patterns of the insect.
Now lets try to apply these abilities to a technical system. We have to detect the source of the light
(optical sensors), execute a movement (operate motors) and we have to establish a meaningful
connection between the detection and the movement (the program).

■ It was the Englishman Walter Grey who put the thought
experiment described above into practice in the 1950’s.
With the help of simple sensors, motors and electronic circuits he
created a variety of "cybernetic" animals that displayed the very
specific behavior of, lets say, a moth. The photograph shows a
replica of the "cybernetic" turtle, exhibited at the Smithsonian
Museum in Washington.

Based on these ideas we will create similar "patterns of behavior"
for our robots and will try to communicate them to the robot in the
form of programs.

GB+USA

■ But why do we need mobile robots? Lets try to apply the behavior of our "imaginary moth" to
technical devices. A simple example for this is light-seeking behavior. We modify the light source by
attaching a bright strip, a guideline, to the floor and align the sensors to face not forward but
downward. With the help of such guidelines a mobile robot can find its way in a warehouse for
example. Additional information at specific points along the line, in the form of a bar code for example,
direct the robot to perform further actions at these locations such as picking up or dropping a pallet.
In fact such robot systems are already in existence today. In large hospitals it is often necessary to cover
long distances for the transportation of consumable supplies such as bed linens. It is time-consuming
and expensive to have the nursing staff transport these materials and often requires hard physical labor.
Additionally performing such tasks reduces the time available to take care of patients.

■ For the last couple of years scientists have begun to deal with
another from of movement that is very common in nature, walking
or running. Robots have been developed that have the ability to
move about on legs. The electropneumatic walking robot "Achille"
that was developed by the royal military academy in Brussels is an
example of a six-legged walking robot. Equipped with one camera
above and one on each of the six legs, this robot is designed to be
able to react mechanically to raised or sunk obstacles (objects or
holes).
Such walking machines can be deployed everywhere where
wheeled and track vehicles don’t have much of a chance, such as
rough or soft terrain, for climbing over obstacles, ascending stairs,
surmounting ditches or for operation in inaccessible or dangerous
areas in nuclear power plants, mining tunnels or during rescue
operations.

It is easy to recognize that mobile robots can play an important role in modern society.

3333 1111

R O B O M O B I L E S E T A C T I V I T Y B O O K L E T

3333 2222

GB+USA
R O B O M O B I L E S E T A C T I V I T Y B O O K L E T

Robots Built with

fischertechnik

Actuators

Sensors

■ So how can we build a robot with our fischertechnik construction kit? To build a robot we need
sensors (e.g. pushbutton sensors,) and actuators (e.g. motors) but also many mechanical parts to
construct a model. The fischertechnik ROBO Mobile Set offers an ideal foundation for this. The following
sensors and actuators are included in this construction set:

Power Motor:
Two of these powerful DC motors (9VDC/2,4W) with built-in gearbox and a
reduction of 50:1 drive the mobile robots (this means that while the motor
performs 50 revolutions the shaft extending from the motor turns only once
during the same time.

Lens Tip Lamp:
This incandescent bulb (9VDC/150mA) enables the output of simple light signals.
A lens is integrated into the glass bulb of the lamp focusing the emitted light. By directing a beam of
light toward a light sensor (phototransistor, see below) you can build a light barrier able to differentiate
between light and dark. The lamp can also be used to display certain states or to generate warning
messages in the form of a blinking lamp. In this construction kit the lamp is used together with 2
phototransistors as special sensor for line recognition.

■ The pushbutton sensor is an example of a digital sensor. Digital values can only assume 2 different
states. These states are identified with 0 or 1 respectively. For the pushbutton sensor "0" signifies that
no current flows between the contacts, "1" signifies that current is flowing.

The fischertechnik pushbutton sensor is designed as a three-way switch. For this reason there are
three terminals. When the red button is pressed the switch connecting the terminals 1 and 3 is activated
mechanically. At the same time the connection between the terminals 1 and 2, which was connected
during the quiescent state, is interrupted. This way both possible starting positions can be selected:

Closed in quiescent state (terminal 1 and 2 connected)
Open in quiescent state (terminal 1 and 3 connected).

The phototransistor may be used both as digital as well analog sensor. In the first case it serves to
recognize clear transitions between light and dark, a marked line for example. But it is also possible to
distinguish the amount of light according to its brightness. In this case the phototransistor works as
analog sensor. Analog values can vary freely between their extreme values. These values have to be
converted into their respective numerical values in order to be processed by the computer.

Incidentally phototransistors belong to the so-called semiconductor devices, its electrical characteristics
are dependent on the intensity of the light. Everybody knows about solar cells that use sunlight to

3

2

1

GB+USA

ROBO Interface

Software ROBO Pro

Power Supply

generate electricity. A phototransistor can be understood as a combination of a mini solar cell and a
transistor. Light impulses (photons) received by the phototransistor generate a very low current that is
then amplified by the transistor.

Note:
Please make sure the polarity is correct before connecting the phototransistor: Red marking = plus pole.
Maximum voltage: 30V max

■ We can connect different sensors and actuators to the ROBO Interface and interpret them. In addition
to 8 digital input terminals the ROBO Interface also offers several analog input terminals. For example,
a resistance value between 0 and 5,5 kΩ applied to the input terminals AX and AY is
converted into a numerical value between 0 and 1024. The measured values of a
brightness sensor, such as a phototransistor, can so be acquired and are
available for further processing. Voltages between 0 and 10VDC can be
measured at the analog input terminals A1 and A2.

The most important role of the Interface lies in the logical connection of the input
values. The Interface needs a program to do this. The program decides in how input
data and sensor signals are processed to generate appropriate output data, motor
control signals, etc. With the ROBO Interface we have enough computing power at our
disposal to design even the most sophisticated programs.

■ A graphical programming interface provides us with the most effective
way to create the necessary programs for the ROBO Interface. The term
"programming interface" stands for a software that enables us to create our
programs in a very comfortable way, using graphical symbols. Actually, the
computer of the ROBO Interface can only execute commands contained in its
so-called machine instruction set. These are essentially simple control
structures that are extremely difficult to use for beginners. That’s why the PC
software ROBO Pro uses graphical elements that are later translated into a
language that can be executed by the Interface.

■ The only thing you need in addition to the ROBO Mobile Set is the Accu
Set. It contains the battery pack serving as mobile power supply for our robot
models and a special charger for the battery pack.
It would be best to start charging the battery pack right away using the
charger. This way it will be fully charged when we want to start
experimenting.

3333 3333

R O B O M O B I L E S E T A C T I V I T Y B O O K L E T

3333 4444

GB+USA
R O B O M O B I L E S E T A C T I V I T Y B O O K L E T

Approach to

Experimentation

First Steps

■ We will go step by step in our exploration of the fascinating world of mobile robots. We will start
with a simple test setup to check the basic functions of Interface and sensors. Then we will build simple
models, which will be assigned specific functions and later attempt more and more complicated
systems.
Should you feel at some point that creating your own programs is too complicated or takes too much time
you can load the supplied sample programs into the Interface and use them to operate the robots.
At the end of this resource guide is a chapter on troubleshooting so you don’t despair should errors occur.

It is very important to take proper care during the construction and initial operation of our robots. When
connecting electrical components we’ll stick closely to the specifications, double and triple checking to
make sure everything is ok. When it comes to the mechanical construction, also for your own creations,
we will pay close attention to the smoothness of operation and low play in the gears and fastenings. It
is up to you and your creativity to write your own programs defining new "behavior". You are only limited
by the amount of memory and computing power of your hardware. The following examples can give you
some ideas.

■ Now that we have covered the theoretical considerations we want to start conducting our own
experiments. Some of you might want to start right away, maybe even with the big walking robot. This
is, of course, possible and if you follow the construction manual closely you will succeed in building the
model on the first try.
But what do you do if it isn’t working? In this case the cause of the fault must be tracked down
systematically. But before dealing with this let’s check the interaction between computer and Interface.

Chapter 1 and 2 of the ROBO Pro software manual describes how to install the control software on your
PC and how to connect the Interface. With the help of Interface tests we will test the different sensors
and actuators.

Pushbutton Sensor
We can for example connect a pushbutton sensor to the digital input terminal I1 and observe how the
state of the input changes if the pushbutton is pressed.

Power Motor
We will test the output terminals by connecting a motor to a motor output terminal, e.g. M1. Using the
left mouse button we can start the rotation of the motor and with the slider we can change the speed.

Phototransistor
If we also want to test the analog input terminal AX a phototransistor can be used as analog sensor.

Pushbutton Sensor

Power Motor

GB+USA

While polarity plays no role in connecting a motor or pushbutton sensor (in the worst case the motor will
rotate in the wrong direction) it is vital for the function of the phototransistor to connect it correctly.
The contact of the transistor with the red marking should be connected to the red connector and the
other contact with the green connector. The second green connector belongs into the socket of the input
terminal AX that is located closer to the edge of the Interface. The second red connector fits into the
socket of AX that is located further on the inside. (Attention: When connecting the phototransistor to a
digital input terminal I1-I8 the red connector needs to go into the socket located closer to the edge of
the case.
Now we can vary the intensity of the light
of the phototransistor using a flashlight.
This will change the reading of the blue
bar of AX. If the indicator does not move
from its maximum position we should take
another look at the connections of the
phototransistor. If however the indicator
remains at zero even with the flashlight
turned off it is possible that the lighting in
the room, the ambient light, is too bright.
The position of the bar will change when
we cover the phototransistor.

To come back to the color-coding of the
connectors again: During assembly we
will always be sure to connect the red
connector to the red wire and the green connector to the green wire. If the right polarity is important for
the circuitry layout we will always choose a red wire for the positive pole and a green wire for the
negative pole. While this might seem overly meticulous a clear color-coding makes systematic
troubleshooting that much easier.

A simple program will round out our first steps in the area of robotics. The program
"Garage Door Control System", explained in chapter 3 of the ROBO Pro manual
might have nothing to do with mobile robots but it is an excellent way to get to know
the ROBO Pro software. Only the motor and three pushbutton sensors from the ROBO
Mobile Set need to be connected to the Interface in order to recreate that program. Everything
else is described in detail in the software manual.

3333 5555

R O B O M O B I L E S E T A C T I V I T Y B O O K L E T

Phototransistor

3333 6666

GB+USA
R O B O M O B I L E S E T A C T I V I T Y B O O K L E T

The First

Simple Robot

■ After Interface test and Garage Door Control System we finally want to put our first robot into
operation. We will assemble the model "Simple Robot" with the two drive motors according to the
construction manual. This will be pretty quick and easy since this model deliberately only holds what is
absolutely necessary for a robot to drive. The motors we’ll connect to the output terminals M1 and M2.

We will open the ROBO Pro software and set up a new program (FILE – NEW). ROBO Pro offers different
levels of difficulty to work in. They can be set in the ROBO Pro menu item LEVEL. For now Level 1 is

enough for us.

An empty work sheet will appear and on the left side the element window. There you can
select the different program elements and place them on the work area using the left mouse

button. The right mouse button will let you change the properties.

A s s i g n m e n t 1 (L e v e l 1) :
Our "simple robot" is should drive straight ahead for 5 seconds, then spin in
circles for 2 seconds and after that come to a stop.

Ti p p s :
Together we will program the first robot step by step:
• We will start with the little green GO man. It represents the start of the program.
• Then we get the motor symbol from the element window and put it below the Start element causing

an automatic connection line to be drawn. In the property window we’ll set the motor output terminal
to "M1" and the rotational direction to "ccw" and confirm with OK.

• By following the same steps to place another motor symbol below the first one we switch on motor 2.
• To wait a certain amount of time we use the Time Delay element placing it below the second motor

symbol and set the time to 5 seconds.
• After that we set motor M2 to rotate in the other direction (cw) then wait 2 seconds and finally switch

both motors off. Our program concludes with the End symbol, the little red STOP man. The illustration
shows the finished program flow chart.

If you are not sure you did everything correctly, you can compare your program with the supplied sample
program. To do this you first save your own program and then load the file Simple Robot 1.rpp from the
samples directory of ROBO Pro (default setting C:\Program Files\ROBO Pro\Sample Programs\ROBO
Mobile Set).
If everything is ok the program can be downloaded into the Interface. After clicking the Download button
a pop-up window will appear. There we select the for program to be loaded into FLASH memory 1 and
that it should be started as soon as it is downloaded.
Immediately after the download the model will start driving straight ahead, turn for a short time and
then stop. If you would like to start the program again press the Prog button on the Interface for a short
time. The LED Prog1 will start blinking again for as long as the program is running. After that it will
remain on. By the way, the program will remain in the FLASH memory of the Interface even if the power

GB+USA

supply is interrupted. To test this we disconnect the battery pack. Then we reconnect the battery pack
and select the saved program by pressing the Prog button until the LED Prog1 lights up. To start the
program we simply press the button again.

Our robot can do much so far, right? Why don’t we extend the assignment a bit?

A s s i g n m e n t 2 (L e v e l 1) :
In order to keep the robot from stopping after just 7 seconds, we will now teach it to
dance.
● Lets have it go straight, turn right, turn left, go backwards for different lengths of

time and at various speeds.
● This should to continue until the program is stopped, by pressing the Prog button on

the Interface.

Ti p s :
• Simply keep reversing the polarity of the motors to make the robot go in the desired directions.
• The speed of the motors can be set between 1 and 8 in the property window of each motor symbol.

If M1 and M2 rotate in the same direction at different speeds the robot will make a turn.
• Draw a connecting line from the exit of the last program element to the line leading into the first

element to make the program repeat continually.
• You can find a finished example under Simple Robot 2.rpp.

Congratulations, you have now built your first robot and programmed it yourself. It might not be
especially intelligent since it is unable to recognize obstacles and would fall of the table if you don’t
watch out. But this will change during the course of our further experiments.

3333 7777

R O B O M O B I L E S E T A C T I V I T Y B O O K L E T

3333 8888

GB+USA
R O B O M O B I L E S E T A C T I V I T Y B O O K L E T

Intelligent

Wheeled Robots

Basic Model

■ Robots require sensors in order to be aware of their environment. The following suggested models
introduce a few different mobile robots enabling us to try out the operation of the different sensors. It
is thereby imperative that internal states of the robot e.g. measurement of distance traveled using pulse
wheels, as well as external signals e.g. light-seeking or tracking are linked. Different assignments have
been created for each model. They are designed to give you ideas and to make you familiar with the
subject matter. The programs for each assignment can be found in the ROBO Pro directory under \Sample
Programs\ROBO Mobile Set\. But feel free to come up with your own assignments for each model. Once
you have completed the following examples you’re sure to come up with many more ideas.

■ Compared to out first "Simple Robot" the basic model is more stabile and robust. In addition it
contains 2 sensors to measure the distance traveled, consisting each of a
pushbutton sensor and a pulse wheel. The pulse wheel is connected
to the motor shaft and activates a pushbutton sensor four times
with each rotation of the motor.
This model serves as a foundation for the other mobile robot
models.

Follow the construction manual to put together the Basic Model. Take great
care during the construction. When the mechanical part of the construction is
complete test the smoothness of operation of each motor by connecting it directly to the battery pack
without using the Interface.

A s s i g n m e n t 1 (L e v e l 1) :
● Program the Interface so the model drives straight ahead for 40 pulses.
● Use the counting sensor at input terminal I1 to measure the pulses.
● Measure the distance covered by the model and calculate the distance traveled per

pulse.
● Repeat this test 3 times and record the variations of the values in a table.

Ti p s :
• First switch on both motors (rotational direction left).
• Use the program element Pulse Counter to count the pulses at I1.
• Count both pulse edges (0-1 when pressing, 1-0 when letting go of the pushbutton). You can set this

under pulse type in the property window. This will make the measurement of the distance traveled
more exact.

• Then switch off the motors and end the program.
• You will find the finished program under Basic Model1.rpp.

GB+USA

You can say that the model travels a distance of roughly one centimeter (or 0.394 in.) per pulse.

By now you will also know what rotational direction you have to set for each motor in order for the model
to drive in a certain direction. Record what you have learned in the table below so you don’t have to
think about it each time you want to change the driving direction. If you connect the wires exactly as
described in the construction manual, a rotational direction to the left causes the wheel to go forward
for any motor. That’s how the motors are programmed in all sample programs.

Normally you would have to place two motor symbols on the screen for each change of direction. This
can be avoided by creating a subprogram for each direction. This will simplify the programming
enormously. Chapter 4 of the ROBO Pro software manual describes in detail how to create a subprogram.
As soon as you have read this chapter you are ready to tackle the next assignment. You can now switch
to level 2 in ROBO Pro.

A s s i g n m e n t 2 (L e v e l 2) :
● Create a subprogram for each direction.
● Program the model to drive along the path of a square with an edge length of one

meter (or 3.28 ft.).
● How high is the repeat accuracy?

3333 9999

R O B O M O B I L E S E T A C T I V I T Y B O O K L E T

R e s u l t :
Amount of Pulses Covered Distance Distance/Pulse

Test 1 40
Test 2 40
Test 3 40

C o m p l e t e t h e t a b l e :
Direction of Model Rotational Direction M1 Rotational Direction M2
Straight ccw ccw
Backwards
Left
Right
Stop

4444 0000

GB+USA
R O B O M O B I L E S E T A C T I V I T Y B O O K L E T

The Lightseeker

Ti p s :
• First create a subprogram "Straight”. Then you can create the other subprograms by copying the first

one. The only thing left to do is to adjust the rotational direction of the motors.
• Using a lower speed when turning left and right will increase the accuracy.
• Once again, use the Pulse Counter element and the pushbutton sensor at input terminal I1 to count

the pulses.
• First load the program into the RAM until you have found out how many pulses are necessary to

perform a 90° turn. For one thing loading into the RAM is much faster than loading into the FLASH
memory and secondly the Flash memory has a "limited" life span of approx. 100.000 downloads.

• The finished program is called Basic Model 2.rpp.

■ Since you have now worked with the Basic Model
extensively it is time for your robot to learn to react to
signals from its environment. Similar to the moth from our
thought experiment of the first chapter it will detect a
source of light and follow it. The construction kit contains 2
phototransistors that we will use as light detector. Thereby each sensor
affects one motor making it possible for the robot to pursue the source of light.
The program consists of two parts. One part deals with searching for a source of light, the other part
implements the pursuit or driving toward the light source. Again we will use subprograms to accomplish
this. After switching it on the light-seeking subprogram will be activated. This subprogram will continue
until a source of light has been detected. The main program tries to steer the robot toward the source
of light. Whenever the direction of the robot greatly deviates from the ideal line, one of the sensors will
no longer be illuminated from the light source. This makes the robot change its direction until both
sensors can again detect the source of light.

First assemble the light-seeking model according to the construction manual.

A s s i g n m e n t 1 (L e v e l 2) :
● First program the "light-seeking" function. The robot should turn slowly at least

360°. Should it find a light, the robot will stop. Otherwise it will turn another 360° in
the other direction. If it is still unable to detect a light source it will wait for 5
seconds and then begin again with its search.

● If it successfully detects a source of light the model should drive toward it. If the
light source moves to the left or the right, the robot should follow the movements of
the light If the robot looses contact the program should return to the light-seeking
routine. See if you can attract the robot with a flashlight and guide it through an
obstacle course.

GB+USA

Count Loop

Ti p s :
• Use the subprograms you already programmed for the Basic Model for the different directions. As

soon as the program Basic model 2.rpp has loaded you can find the program Basic model 2 and with
it its subprograms in the element group window of ROBO Pro under loaded programs. You can
simply insert these subprograms into your new program.

• For the "light-seeking" subprogram use the Count Loop element. (For a description of this element
please see the ROBO Pro manual).

• In the loop between connection "N" and connection "+1"
you query the phototransistors and count one pulse at
the pulse sensor I1. The loop iterates until the robot has
detected light or has rotated 360°. You simply have to try
out how many loops it takes until the robot has
completed a full rotation. Then enter that value "Z" in the
count loop element.

• A second loop is then programmed in exactly the same
way for the search in the opposite direction.

• If the robot detects light, it stops, and exits the
subprogram.

• Here the complete light-seeking subprogram:

• In the main program you again query the phototransistors and control the motors depending on which
phototransistor has detected the light:

• You can achieve the right and left turns by setting different speeds for M1 and M2 with the same
rotational direction. This results in a very smooth driving style.

4444 1111

R O B O M O B I L E S E T A C T I V I T Y B O O K L E T

Light at I3 and I4 Straight Ahead
Light only at I3 Turn Right
Light only at I4 Turn Left
No light detected Stop and return to the light-seeking subprogram

4444 2222

GB+USA
R O B O M O B I L E S E T A C T I V I T Y B O O K L E T

The Tracker

• The main program finally looks like
this:

• You will find the finished program
under Lightseeker.rpp.

• Use a flashlight as light source. Take
care that the beam of light is not
focused too narrowly so that both
photosensors are illuminated by the
light source. Please note that in a
very bright space another source of
light such as sunlight through a big
window might outshine the
flashlight. This might cause the
robot to drive right past your lamp
toward the brighter light.

■ Search and pursuit are fundamental characteristics
inherent to intelligent beings. With the Lightseeker you
built and programmed a robot that is able to react to direct
signals from its target.
With the Tracker we apply another search principle. Instead of
a targeted approach to the source of light we mark a black line
that the robot is supposed to follow. This assignment can be solved relatively
easily by using the phototransistors. They measure the light reflected by the marking and the motors are
corrected accordingly. To make sure this functions accurately the line is illuminated with the lamp. Take
care to avoid an unfavorable configuration that causes stray light from the lamp to throw off the photo
sensors. The light focusing properties of the incandescent bulb’s optical lens is especially helpful in this
regard.

Now follow the construction manual to put together the Tracker Model.

A s s i g n m e n t 1
● First write the subprogram used to find the track. In order to do this the robot should

turn around once.
● If it is unable to find a track it should drive straight for a short while and then start

searching again. The phototransistors are queried for track recognition.
● If the robot has detected a track it should follow it.
● If the track has run out or the robot lost it, due to a sharp directional change for

example, it should start a new search.

Robot with Obstacle

Detection

GB+USA

Ti p s :
• After the lamp has been turned on you have to wait a short while (about one second) before you can

query the phototransistors. Otherwise the phototransistor will detect "dark", meaning a track, where
there is none, because the reading is done before the lamp is fully lit.

• As track you can use black duct tape that is about 20mm (or 0.787 in.) wide or simply draw a black
track with this width on white paper. The turns should not be too tight otherwise the robot will lose
sight of the track too frequently. First use the Interface test to make sure that the phototransistors are
able to detect your track accurately. Don’t forget to switch on the lamp when you do this.

• Adjust the lamp so both phototransistors output the value 1 on a light background, even with motors
M1 and M2 turned on. If the battery charge is a little low, the lamp will be somewhat darker when
the motors are turned on. If the lamp hasn’t been adjusted properly it is possible that the
phototransistor will read "dark" even though it hasn’t found a track.

• Tracking works in a similar way as light-seeking. You just have to adjust the search so the model
drives straight ahead for a bit, after the full rotation, before searching again.

• Please note that the model is supposed to drive straight ahead whenever both
phototransistors output the value "dark" (=0).

• You will find the finished program under Tracker.rpp.

A s s i g n m e n t 2
● Create a track with curves of varying degrees of tightness. Which is the smallest

radius the model can handle?
● When correcting the track, experiment with different speeds of M1 and M2. Which

combination offers the best result?
● Create a round track. Try to optimize the speeds in such a way that the robot

achieves the best possible lap time. This assignment lends itself perfectly to a
competition between several robots.

■ All of the robots we have built so far were able to cover a certain distance as well as follow a light
source or a track. But what happens if there is an obstacle in its way? Well, either the obstacle is pushed
aside or the robot keeps running against it senselessly until the battery is empty. It would, of course, be
much more intelligent if the robot would be able to recognize the obstacle and avoid it accordingly. To
accomplish this, the robot is equipped with a flexible circular bumper with three pushbutton sensors.
With this bumper it can differentiate if an obstacle is to the left, to the right or behind it.
How it reacts to the obstacle remains only a question of the programming.

First assemble the model "Robot with Obstacle Detection”. Only one pushbutton sensor (I1) is
necessary to measure the distance traveled. For this reason we can remove the
pushbutton sensor I2 from the Basic Model and use it for the obstacle detection.

4444 3333

R O B O M O B I L E S E T A C T I V I T Y B O O K L E T

4444 4444

GB+USA
R O B O M O B I L E S E T A C T I V I T Y B O O K L E T

A s s i g n m e n t 1 (L e v e l 2) :
● First the robot should drive straight ahead. If it encounters an obstacle (I4) to the

left, it should back up a bit and then move to the right.
● If it encounters an obstacle (I3) to the right, it should back up a bit and then move to

the left.

Ti p s :
• Obstacle recognition when going backwards will be set aside until later.
• The main program queries the pushbutton sensors. Depending on which pushbutton sensor is

activated the model evades to the left or to the right. In each instance this is done using a
subprogram.

• The pulse count when turning right should be different from the pulse count when turning left (e.g. 3
pulses to the right, 5 pulses to the left). Otherwise it can happen that the model drives into a corner
and gets struck because it turns to the left and right in equal amounts.

• The finished program is called Obstacle 1.rpp.

There are two things the obstacle recognition model does not yet know how to do: It cannot recognize
obstacles when going backwards. Equally it does not yet recognize when there is an obstacle directly in
front of it. But it could be able to recognize both. If I5 is pressed while going backwards an obstacle is
behind the model. Are I3 and I4 activated at the same time while going forward an obstacle is located
directly in front of the model. In this case the robot could turn 90° immediately. In all we now have the
following possibilities the robot should be reacting to:

Some new program elements such as Operators (e.g. AND, OR) from ROBO Pro Level 3 can help you to
solve this problem in an elegant way. Level 3 offers you the possibility to exchange data between
different elements by using orange arrows. Switch to that level in the software to take full advantage
of these options. It would now be a good idea to take out the ROBO Pro manual and read chapter 5
carefully. After that you’ll be ready for the next assignment.

A s s i g n m e n t 2 (L e v e l 3) :
● Modify your obstacle recognition program in such a way that the model will react

as described in the table above.
● Take advantage of the possibilities offered by ROBO Pro level 3.

Pushbutton
O b s t a c l e S e n s o r R e a c t i o n
right only I3 move to the left (turn approx. 30°)
left only I4 move to the right (turn approx. 45°)
in front I3 and I4 move to the left (turn approx. 90°)
behind I5 Only queried when going backwards. Stop, then

continue evading as planned.

GB+USA

Ti p s :
• In the "Obstacle Query" subprogram the different sensor combination possibilities are queried using

operators. The subprogram has a separate exit for each of the possibilities.

Data Input SR = sensor right
Data Input SL= sensor left
Exit NO = no obstacle
Exit OF = obstacle in front
Exit OL = obstacle left
Exit OR = obstacle right

• Place the orange Sensor elements into the main program and connect
them to the subprogram using data inputs, so you can see right away
which sensor is being queried.

• In each of the different evasion subprograms, I5 is queried when the
robot is going backwards. The model will go backwards until either the
set pulse count has been reached or until I5 is pressed. Again, I5 is
placed into the main program, so you can see right away in which
subprograms the sensor is queried.

• You will find the complete program under Obstacle 2.rpp.

The advantage of the programming technique used in this assignment is
that you can see directly in the main program which sensor is being
queried in the subprogram. If you would like to change the input you can do
so at one single point without having to search through all subprograms to
find out where the sensor might be hiding. Additionally, using operators
enables you to create very clear logic operations. In principal this is also
possible using branch elements. But this becomes confusing very quickly if
several cases are queried.

4444 5555

R O B O M O B I L E S E T A C T I V I T Y B O O K L E T

4444 6666

GB+USA
R O B O M O B I L E S E T A C T I V I T Y B O O K L E T

Lightseeker with

Obstacle Detection

■ We are nowhere near the end of the possibilities offered by the ROBO Mobile Set.
For this reason we will now combine the two functions of light-seeking and obstacle detection. From a
scientific point of view the robot will then be equipped with two behaviors. Since both behavior patterns
can’t be active at the same time, they will receive different priorities. As a rule the robot performs its
light-seeking behavior. Should it detect an obstacle, a hazard to the robot, the obstacle recognition
behavior becomes active. If everything is clear the robot can continue its light-seeking.

Professional software developers, when faced with such a demanding task won’t simply plough ahead
with programming. No, they use a specific strategy to develop the program. One of these methods is

called "top-down design". With this approach the system is defined as a whole from the top down
without dealing with the details at the beginning. It is this method we will use to work out this

problem.

A s s i g n m e n t 1 (L e v e l 3) :
Teach the robot the following behavior patterns:
● Search for a source of light.
● As soon as you have found it, follow it.
● Should an obstacle appear on the way, evade it.
● Then begin searching for a source of light again.
Use the program elements of ROBO Pro level 3 to find the solution.
Apply the "top-down" approach when working on the assignment.

Ti p s :
First divide the assignment into three parts:
• Query if the robot sees a source of light (subprogram "Light")
• Query if it encounters an obstacle (subprogram "Obstacle")
• Tell the robot what to do depending on these results (subprogram "Driving")

Now consider the different situations the robot is able to perceive to create
the subprograms "Light" and "Obstacle". Assign a numerical value to each
situation. This value is saved as variable using a Command element. Each
situation will result in a reaction that is executed in the "driving" subprogram.

S u b p r o g r a m l i g h t :
N o S i t u a t i o n State of the Sensors R e a c t i o n
0 No light source present I6=0; I7=0 seek light
1 Light source directly in front of robot I6=1; I7=1 drive straight ahead
2 Light source to the left of robot I7=1 execute a left turn
3 Light source to the right of robot I6=1 execute a right turn

GB+USA

Now you simply have to reproduce these conclusions in ROBO Pro using program elements.

Subprogram light:

PR=phototransistor right
PL=phototransistor left

As before, place the elements for querying
the phototransistors into the main program,
so you can see right away what is queried in the
subprogram.

The variable storing the value from the command elements
is also placed into the main program. It is used by several
subprograms. You connect it to the subprogram using a data
output.

Create the subprogram "Obstacle" according to the same principles as the subprogram "Light".

In the subprogram "Driving" you query the current
value of the variables using branch elements
and program the appropriate reaction:

SB=sensor behind

4444 7777

R O B O M O B I L E S E T A C T I V I T Y B O O K L E T

S u b p r o g r a m o b s t a c l e :
N o S i t u a t i o n State of the Sensors R e a c t i o n
4 Obstacle directly in front of robot I3=1; I4=1 evade 90°
5 Obstacle to the right of robot I3=1 evade

to the left
6 Obstacle to the left of robot I4=1 evade

to the right

4444 8888

GB+USA
R O B O M O B I L E S E T A C T I V I T Y B O O K L E T

Robot with

Edge Detection

As a final detail you now have to create the subprograms used in this subprogram.
But wait a minute! Most of them already exist. The light-seeking subprogram for example can be copied
from the program for the Lightseeker Model. If you don’t remember how to do this, please read chapter
4 of the ROBO Pro manual.

But watch out:
For the Lightseeker Model the phototransistors were connected to input terminal I3 and I4. But now they
are on I6 and I7. Additionally, we queried pushbutton sensor I1 to count the pulses when turning left,
and I2 when turning right. Now there is only I1 to count the pulses, which works just as well by the way.
This means that you will have to adapt the light-seeking subprogram after you have copied it. Since the
sensor query is hidden in the subprogram it is easy to miss. This won’t happen if you place the inputs
into the main program and connect them to the subprogram using data inputs. But you weren’t aware
of this yet when we worked on the Lightseeker.

The subprograms for evasion also already exist, we wrote them for the Obstacle Recognition Model.
Here the pushbutton sensor I5, queried additionally when going backwards, has already been placed
into the main program

You can take a look at the finished program under Obstacle-Light.rpp.
At first glance the main program looks very clear and simple. But there is a lot of mental elbow grease
behind the subprograms. Still, by using the step-by-step approach of the top-down method you too
would be able to tackle such a complex program.

By the way, if you have a friend who owns a ROBO Mobile Set as well, you can go even further with
these experiments. Simply mount a source of light on each of the robots. And both robots will be seeking
each other.

■ We have just seen, in the previous example, how to approach the programming of a more complex
program. Now you can turn to another very important behavior of a mobile robot. It is supposed to learn
not to fall off the table. In most cases driving against an obstacle won’t hurt the robot. But if it falls off
a table that is almost three feet high it might be damaged in one way or the other, even if the
fischertechnik building blocks are very robust. For this reason the robot will be equipped with sensors
that enable it to recognize edges. These edge detectors each consist of a pushbutton sensor that is
activated by a rotating wheel. This wheel is also able to move up and down. As soon as the wheel moves
over the edge of the table it drops, the pushbutton sensor is no longer activated, the program realizes
that the model has reached a precipice and reacts accordingly. The robot has 4 edge detectors in total,
enabling it to feel for a precipice on each side while going forward or backwards. As a result this model
does not have a pulse sensor to measure the distance traveled. The covered distance will be controlled
using the on-time of the motors.

First assemble the model according to the construction manual.

GB+USA

Check carefully if the edge detectors respond correctly:
• when the model reaches the edge of the table and the pushbutton is pressed precisely again
• when the wheel is on the table again.
If necessary, one or the other pushbutton sensors might have to be adjusted up or down a bit.

A s s i g n m e n t 1 (L e v e l 3) :
● First consider how the robot should react when reaching a precipice.
● Upon closer examination you will realize that there are many possible

combinations of sensors located over the precipice.
● One of the 4 detectors could be activated, or 2 or 3 different ones at the same time,

or even all four sensors.
● How should the robot react to each of these possibilities?

Ti p s :
You will find the solution in the following table. Those sensors located over a precipice (pushbutton
sensor=0) are marked with an ●. Each combination receives a number. In the program that will be
created later each option is assigned the corresponding number. The robot will react to the current
situation on the basis of that number. But more about this later. First, only think about how the robot
must stand for a certain combination to occur and if it reacts correctly.

4444 9999

R O B O M O B I L E S E T A C T I V I T Y B O O K L E T

Front Front Back Back
No. Right Left Right Left Reaction

(I3) (I4) (I5) (I6)
0 Straight ahead (no sensor over the precipice)
1 ● ● ● ● Stop (all 4 sensors over the precipice)
2 ● ● ● Turn a bit to the right
3 ● ● ● Turn a bit to the left
4 ● ● ● Turn a bit to the left
5 ● ● ● Turn a bit to the right
6 ● ● First back up, then turn to the right
7 ● ● Turn a bit to the left
8 ● ● Turn a bit to the left
9 ● ● Turn a bit to the right

10 ● ● Turn a bit to the right
11 ● ● Drive forward a bit
12 ● First back up, then turn to left right
13 ● First back up, then turn to the right
14 ● Drive forward a bit
15 ● Drive forward a bit

5555 0000

GB+USA
R O B O M O B I L E S E T A C T I V I T Y B O O K L E T

Pretty intense, right? But don’t worry there is a finished program for this model using all the advantages
ROBO Pro has to offer. It is called Edges.rpp.

The most important elements are located in the main program making it easy for you to understand the
sequence as a whole. The complex query of the sensors and the control of the motors are hidden in
subprograms. First the main program:

The sequence starts with the query of the 4
pushbutton sensors. All the way to the left you can
see which pushbutton sensor is being queried. They
are connected to the subprogram via data inputs. The
"Query" subprogram determines which pushbutton is
pressed and assigns the value detailed in the table
above. This value is assigned to a variable with the
same name that you’ll be able to recognize in the main
program. The value of the variable is then sent to the
"Reaction" subprogram that controls both motors
depending on this value. The pushbutton sensors are
read again in the "Reaction" subprogram since the
edge sensors are still queried while the model is
avoiding the precipice.

If need be, you are now able to change the assignment
of the pushbutton sensors as well as the motor
outputs on the Interface, without having to dig through
the subprograms to see where an input element or a
motor symbol might be hiding. Each input and each
output appears only once.

This programming technique is especially useful when you would like to use a subprogram for many
different models and don’t know yet which inputs and outputs to you’ll use on the Interface in each case.

If your curiosity has been piqued simply take a look at the subprograms and try to understand them. The
programming principle is similar to the "Lightseeker with Obstacle Detection" Model.

A s s i g n m e n t 2 (L e v e l 3) :
Load the program into the Interface and let the model drive around a table.
● Does the model always react in the right way?
● Should it behave differently with certain sensor combinations?
● Tweak the program as required.

GB+USA

The Walking

Robot

■ After concentrating on wheeled robots we now turn to another method of locomotion that we can use
for mobile robots, walking.
The gait of insects lends itself perfectly as model for the movement of "mechanical six-legged walkers".
During the so-called tripod walk three of the six legs always lift off the floor simultaneously. The front
and back legs on one side lift together with the middle leg of the other side.

Tripod Walk
Die Beine, die auf dem Boden stehen (schwarz dargestellt), bilden ein stabiles
Dreibein, so dass das Modell immer sicher steht und beim Laufen nicht umkippt.

The legs that remain on the floor (shown in black), form a stable tripod, so the model always has a solid
stance and does not tip over when walking.

The legs of the fischertechnik Walking Robot are constructed as so-called four-joint gears. The design of
the four-joints used here is called a "crank-rocker mechanism". Driven by a crank, the floating members
of the gears make oscillating movements. The distance between the individual joints and the position of
the nadir (this is the bottom of the leg), are arranged in such a way that the foot performs an elliptical
movement when the drive crank is turning. This results in a movement resembling a walking step.

The 6 cranks driving the legs have to be adjusted exactly as shown in the construction manual. The three
legs that touch the floor at the same time have the same crank position. The cranks of the 3 legs that

are in the air at that time are rotated 180° against the other three. The correct position of the
cranks in relation to each other ensures that the model is able to walk with the correct

sequence of steps, the tripod walk.

The hub nuts used to secure the gears on the shafts have to be screwed in tightly,
so the cranks won’t become misaligned during walking motion.

One motor each drives the right and the left side of the model (this is necessary for walking
curves). For this reason you have to make sure that the middle leg on one side is always

in the same position as the two outer legs on the other side. The software controls this
synchronization via the pushbutton sensors I1 and I2.

First assemble the model according to the construction manual. Double-check all
sensors and motors using the Interface test, to make sure they are connected accurately.

Rotational direction of the motors: rotational direction left = straight ahead.

A s s i g n m e n t 1 (L e v e l 1) :
Teach the robot how to walk.
● Program the model to walk straight ahead using the tripod walk.
● Use the pushbutton sensors I1 and I2 to synchronize the left and right legs.
● When doing so make sure that the two outer legs on one side and the middle leg on

the other side are in the same position.

5555 1111

R O B O M O B I L E S E T A C T I V I T Y B O O K L E T

GB+USA
R O B O M O B I L E S E T A C T I V I T Y B O O K L E T

Ti p s :
• First bring the legs on the left and the right side into the starting position. Switching on both motors

will allow you do this (rotational direction left).
• The sequence should continue only when both pushbutton sensors I1 and I2 are not depressed (This

query is necessary as soon as the model is supposed to take its second step).
• Let the motors run until the appropriate pushbutton sensor (I1 for M1, I2 for M2) is depressed again.

It is very important here that the model doesn’t begin the next step until both pushbutton sensors are
depressed. Because only then the legs are in the right position to each other. Provided, of course, that
the cranks driving the legs are adjusted correctly as shown in the construction manual.

• Now the sequence can start over and the robot will take its second step. The model will now walk
straight ahead until you stop the program.

• You will find the finished program under Walking Robot 1.rpp.

Similar to what we did with the wheeled basic model you can now make the model walk to the left, to
the right or backwards by changing the rotational direction of the motors. You can use I1 or I2 to count
the steps.

A s s i g n m e n t 2 (L e v e l 2) :
● Program your model to take 10 steps forward, 3 steps to the left, 3 steps to the right

and 10 steps back again.
● Create an individual subroutine for each direction.
● Use the Count Loop element to count the steps.

Ti p s :
• Simply copy the program Walking Robot 1.rpp into a subprogram.
• Copy this subprogram as often as necessary for each of the different walking directions. Change the

rotational directions of the motors in each subprogram to make the model move into the desired
direction.

• Use the Count Loop element to count the amount of steps for each rotational direction. With each
cycle of the subprogram the model takes one step. If the program cycles through the loop with the
subprogram 10 times, the model takes 10 steps.

You can teach your walking robot any desired
sequence of steps in this way (Walking Robot 2.rpp).

We have already discussed the subject of
obstacle recognition in detail for the

wheeled robots. So we won’t repeat it
here. But why don’t you try to apply
this behavior to the walking robot.

The necessary sensors are all included
in the construction kit. You can use the

wheeled robot as example during the programming. Best of Luck!

5555 2222

GB+USA

Expansion

Possibilities

Handheld Infrared

Transmitter

ROBO RF Data Link

■ The ROBO Interface offers many more functions than discussed previously with the mobile robots. But
you will need additional components that are not included in the construction kit to take full advantage
of them. But since they offer very interesting options for the robots we now want to introduce a few of
them here.

■ The ROBO Interface has an infrared receiver diode for the handheld transmitter included in the IR
Control Set Art No. 30344. This enables you to query the buttons on the transmitter in the ROBO Pro
software as digital inputs and so for example turn motors on and off.

We have programmed a remote control for the walking robot as a sample program. With the 4 oval
arrow buttons on the remote control you can make the model go forward, backwards, to the left and to
the right. You only have to load the program Walking Robot IR.rpp into the Interface to get started.

Another ingenious program in connection with the remote control is the program Mobile-Teach-IR.rpp.
Using this teach-in program you can control a wheeled robot, e.g. the Simple Robot or the Basic Model.
The model will remember the path it traveled and will then be able to repeat it as often as you want it
to. But once the program is stopped this saved path will be erased.
It is the "List" program element in ROBO Pro that makes such a program possible. Many values can be
stored in this element and then called up again (please also see the ROBO Pro manual). The program
itself might be pretty complex but using it is very simple:

1. Load the program Mobile-Teach-IR.rpp into the Flash memory of the ROBO Interface and start it.
2. Press the M1 / button on the remote control. This starts the "learning process".
3. Use the oval arrow buttons to steer the model into the desired direction.
4. Press the M2 / button. This will save the path the robot traveled.
5. Press the M3 / button. This will make the robot travel along the saved path.

With an application like this, the programming of robots is a breeze! You should note that the saved path
will be erased as soon as you stop the program with the Prog button on the Interface.

■ The radio interface ROBO RF Data Link Art No. 93295 replaces the interface cable between PC and
the Interface with radio data transmission. This is a fine thing indeed. First of all you won’t have to keep
connecting and disconnecting the cable each time you load a program into the Interface. Secondly, you
will be able to run programs wirelessly in online mode. This will make it much easier to find errors than
with the regular download operation. And finally you will be able to control the mobile robots in online
mode on your screen using a panel in ROBO Pro, similarly to using the IR remote control. But differently
from the remote control, the screen additionally displays the data provided by the interface such as
values of variables or analog inputs, supply voltage from the battery pack and speed of the motors.

5555 3333

R O B O M O B I L E S E T A C T I V I T Y B O O K L E T

5555 4444

GB+USA
R O B O M O B I L E S E T A C T I V I T Y B O O K L E T

ROBO I/O-Extension

As an example we have modified the teach-in program and are now able to control the wheeled robot
using a software panel. The program is called Mobile-Teach-RF.rpp. Of course you can also try it out
using the interface cable. But that might be pretty uncomfortable. The operating range of the model is
limited, the cable gets tangled and the robot no longer turns correctly. After trying this, you will probably
run out right away and get yourself the RF Data Link.

Load the program Mobile-Teach-RF.rpp.
Switch to Panel in the Function Bar of the main program . Then start the program in online mode. Now
you’ll be able to control and program the model using the buttons in the panel.

1. Press the "Learn” button. This starts the "learning process".
2. Use arrow buttons to steer the model into the desired direction.
3. Press the "Save” button. This will save the path the robot traveled.
4. Press the "Run” button. This will make the robot travel along the saved path

Here as well, the saved path will be lost once the program is terminated.

Please refer to the ROBO Pro manual to learn more about creating panels.

■ Should you build a model with so many sensors and motors that the input and output terminals of the
ROBO Interface are not enough, you can connect a ROBO I/O-Extension Art No. 93294 to the Interface.
This will provide you with an additional 8 digital inputs, 4 motor outputs and one analog resistance
input. A second and a third module can be connected to this I/O-Extension, all controlled using a ROBO
Interface. This will provide you with a total of 16 motor outputs, 32 digital inputs, 5 analog resistance
inputs, 2 analog voltage inputs as well as 2 inputs for distance sensors.

If this is still not enough for you, you can even control several Interfaces from your PC in online mode.
For example, one connected to a serial COM interface, one to the USB port, or 2 Interfaces connected
to the USB port and each with up to 3 ROBO I/O-Extensions! Dizzying, isn’t it? Chapter 6 of the ROBO
Pro manual also explains how the whole thing works.

GB+USA

Trouble Shooting■ Experimenting is fun. That is, as long as everything is working. Most of the time this will be the case,
but unfortunately not always.
It is only when a model is not working right, that you will find out if you truly understand the mechanism
and are able to find the fault right away.
With mechanical faults at least there is something to see (assembled incorrectly) or feel (stiff to move).
But if electrical problems also arise it becomes much more difficult.
The pros use a series of different measuring instruments to troubleshoot, such as voltmeter or
oscillograph. But not everyone has such devices at hand. For this reason we want to try to zero in on a
fault with simple means and fix it.

Assembly of Cables
Before we begin with our experiments, we first have to get some of the
components from the Fischertechnik construction kit ready. The supplied
connectors, for example, are clamped to the individual cable segments.
First we cut the cables to size. We measure the specified lengths and cut the
segments accordingly. Each cable is tested after assembly using the battery pack
and the lamp. If the lamp lights up after it is connected to the battery, the cable is
ok. We will also check if the color-coding is correct, red connector red cable, green
connector green cable.

Interface Test
If a program (even a supplied one) does not work in connection with our model we start the Interface
test. This utility program enables us to test each input and output separately. Are the sensors working?
Are the motors rotating in the right direction? For all our mobile robots the motors are connected in such
a way that the wheel or the leg will move forward if the rotational direction=ccw. If everything is ok here
as well we’ll start looking for a mechanical cause.

Loose Connections
Loose connections are a nasty fault. On one hand it is possible that the way the connectors fit into the
sockets is too loose. In this case you can adjust the contact springs a bit using a small screwdriver. But
be careful, if you bend them too much the contacts might break or the fit might become too tight.
Another cause of loose connections are the clamp locations where the connector is secured to the cable
with a screw. Please tighten the screws carefully! This is also an excellent opportunity to check if any
of the thin copper wires might have broken off.

Short-Circuits
On occasion you might also create a short-circuit by connecting cables incorrectly. In that case, nothing
will work as it should. The battery pack has a built-in fuse that will interrupt the current when the
temperature or the current is too high. In case of overheating the outputs terminals of the Interface will
also be shut down.
There can also be a short circuit if you fail to tighten the little screw properly that secures the electrical
connector to the cable. The screw might then stick out over the edge of the connector. If you plug two
connectors into two adjacent sockets on the Interface and their screws come into contact a short-circuit

5555 5555

R O B O M O B I L E S E T A C T I V I T Y B O O K L E T

5555 6666

GB+USA
R O B O M O B I L E S E T A C T I V I T Y B O O K L E T

will result. For this reason the little screws should always be tightened properly. Always make sure that
the screws don’t come into contact with each other when plugging in the connectors.

Power Supply
If there are inexplicable interruptions during operation an almost empty battery pack might be the cause.
The voltage falls for a shot time when connecting a load (motor on). This causes a reset of the processor
on the Interface. When the red LED on the ROBO Interface lights up, the voltage of the power supply is
too low. This means the battery pack needs to be charged.

Programming Error
If errors occur in a program you have written yourself and you cannot find a way to explain them, it might
be a good idea to be on the safe side and load one of the supplied programs that comes closest to yours.
This way you will be able to rule out electrical or mechanical defects. During online mode you can follow
the program flow on your screen. If the program gets stuck at a certain point, then this is the place to
look for the cause. You might have selected an incorrect input or motor for example or maybe an
incorrect value is queried at a branch or a Y/N connection has been switched.

If none of this is successful, you can always contact fischertechnik service
(e-mail: info@fischertechnik.de).

Or visit our website at www.fischertechnik.de. There you will find a Forum, Chat, Market place, Gallery
and you can join the Fischertechnik Fan-Club for free.

We hope you’ll have many hours of fun with the ROBO Mobile Set with plenty of surprises and sudden
insights.

